Innate Immune Interactions between Bacillus anthracis and Host Neutrophils
نویسندگان
چکیده
Bacillus anthracis, the causative agent of anthrax, has been a focus of study in host-pathogen dynamics since the nineteenth century. While the interaction between anthrax and host macrophages has been extensively modeled, comparatively little is known about the effect of anthrax on the immune function of neutrophils, a key frontline effector of innate immune defense. Here we showed that depletion of neutrophils significantly enhanced mortality in a systemic model of anthrax infection in mice. Ex vivo, we found that freshly isolated human neutrophils can rapidly kill anthrax, with specific inhibitor studies showing that phagocytosis and reactive oxygen species (ROS) generation contribute to this efficient bacterial clearance. Anthrax toxins, comprising lethal toxin (LT) and edema toxin (ET), are known to have major roles in B. anthracis macrophage resistance and systemic toxicity. Employing isogenic wild-type and mutant toxin-deficient B. anthracis strains, we show that despite previous studies that reported inhibition of neutrophil function by purified LT or ET, endogenous production of these toxins by live vegetative B. anthracis failed to alter key neutrophil functions. The lack of alteration in neutrophil function is accompanied by rapid killing of B. anthracis by neutrophils, regardless of the bacteria's expression of anthrax toxins. Lastly, our study demonstrates for the first time that anthrax induced neutrophil extracellular trap (NET) formation.
منابع مشابه
Bacillus anthracis Interacts with Plasmin(ogen) to Evade C3b-Dependent Innate Immunity
The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with ...
متن کاملBacillus anthracis toxins inhibit human neutrophil NADPH oxidase activity.
Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, spore-forming bacterium. B. anthracis virulence is ascribed mainly to a secreted tripartite AB-type toxin composed of three proteins designated protective Ag (PA), lethal factor, and edema factor. PA assembles with the enzymatic portions of the toxin, the metalloprotease lethal factor, and/or the adenylate cyclase edema fac...
متن کاملRoles of macrophages and neutrophils in the early host response to Bacillus anthracis spores in a mouse model of infection.
The development of new approaches to combat anthrax requires that the pathogenesis and host response to Bacillus anthracis spores be better understood. We investigated the roles that macrophages and neutrophils play in the progression of infection by B. anthracis in a mouse model. Mice were treated with a macrophage depletion agent (liposome-encapsulated clodronate) or with a neutrophil depleti...
متن کاملAntibacterial role for natural killer cells in host defense to Bacillus anthracis.
Natural killer (NK) cells have innate antibacterial activity that could be targeted for clinical interventions for infectious disease caused by naturally occurring or weaponized bacterial pathogens. To determine a potential role for NK cells in immunity to Bacillus anthracis, we utilized primary human and murine NK cells, in vitro assays, and in vivo NK cell depletion in a murine model of inhal...
متن کاملClpX contributes to innate defense peptide resistance and virulence phenotypes of Bacillus anthracis.
Bacillus anthracis is a National Institute of Allergy and Infectious Diseases Category A priority pathogen and the causative agent of the deadly disease anthrax. We applied a transposon mutagenesis system to screen for novel chromosomally encoded B. anthracis virulence factors. This approach identified ClpX, the regulatory ATPase subunit of the ClpXP protease, as essential for both the hemolyti...
متن کامل